Boğaziçi University Department of Physics

Phys 496/68N

$\begin{array}{c} {\rm Problem \ Set \ 7} \\ {\rm Due \ on \ December \ 16^{th}, \ 2011} \end{array}$

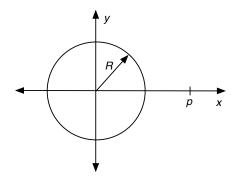
Problem 1

Consider the following integral:

$$I = \int_0^1 f(x) \, dx$$

where

$$f(x) = 3e^{-10(x-\frac{1}{10})^2} + e^{-50(x-\frac{3}{5})^2}$$


Write a Monte Carlo code that evaluates I and σ_I for N = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000]with w(x) = 1 another weight function of your choice such that your reduce the error in integration as much as possible.

where I_1 is calculated with w(x) = 1, and I_2 is calculated with your weight function.

Problem 2

Consider a disk of radius R = 1 m with a charge density $\sigma = \alpha r$, where $\alpha = 1$ nC/m³ is a constant, as shown in the figure.

- a) Write a function that finds the potential at point P located at $x_o = 3$ m using Monte Carlo integration with a given number of samples. The prototype of the function must be double potential(int N);
- b) Call this function 100 times with N = 10,000,000. Each call will return a measurement. Say these are V_i for $i = 1 \dots 100$. Find the average potential $\overline{V} = \frac{1}{N'} \sum V_i$ and its standard deviation σ_V . Then, your answer for the potential would be any of $V_i \pm \sigma_V$. Is σ_V what you expect for this problem with N = 10,000,000?
- c) Estimate the error on the average, \bar{V} ?

