Boğaziçi University Department of Physics

Phys 496/68N

Fall 2011

$\begin{array}{c} {\rm Problem \ Set \ 6} \\ {\rm Due \ on \ December \ 9^{th}, \ 2011} \end{array}$

Problem 1

You will study 1D spline interpolation in this problem:

a) Write a function that finds the 2nd derivatives (y''_j) of a given data set. The prototype of the function should look like this:

void spline(double *x, double *y, int n, double *y2)

where **x** and **y** are containing **n** data points given as input. **y2** should return the 2nd derivatives (y''_i) . Assume that, the 2nd derivatives at end points of the whole data set are zero; $y''_1 = y''_n = 0$.

b) Write a function that finds the interpolated value for a given data set and 2nd derivatives. The prototype of the function should look like this:

```
double splineval(double *x, double *y, double *y2, int n, double xx)
```

where x, y, and y^2 are containing n data points with their derivatives as their names suggest. This function will return, as a double type, the interpolated value for a given xx.

c) Consider the following table to test your code:

x	У
0	0.00000
1	0.67744
2	0.15969
3	0.00740
4	-0.01386
5	-0.00646

Find interpolated values between 0 and 5 with steps of 0.01 using cubic splines. Make a plot of your interpolated *curve* superimposed on top of the data using "o" markers.

Problem 2

Consider the following table:

	x=-3	-1.5	0.0	1.5	3.0
			-0.2999		
			-7.9966		
0.0	-0.0365	-2.7736	0.0000	2.7736	0.0365
1.5	-0.0031	0.4784	7.9966	0.0000	0.0005
3.0	0.0000	0.0312	0.2999	0.0320	0.0000

Write a code that finds interpolated values of this data for all x = [-3,3] and y = [-3,3] pairs in steps of 0.025 for each axis using 2D cubic splines. There will be total of $241 \times 241 = 58081$ points. Make a contour plot of these interpolated data with 19 levels, from -9 to 9. (Hint: You can call contourf(x,y,z,-9:9) to do this in Matlab.)