Boğaziçi University Department of Physics

Phys 442

Spring 2011

$\begin{array}{l} \text{Problem Set } \#2 \\ \text{Due on April 13}^{\text{th}}, 2011 \end{array}$

Problem 1

Trapezoidal rule is given by

$$\int_{x_1}^{x_2} f(x) \, dx = h\left[\frac{1}{2}f_1 + \frac{1}{2}f_2\right] + \mathcal{O}(h^3 f'')$$

Show that

- a) This formula yields exact result for a polynomial of degree-1, as expected due to being f'' = 0 which yields $\mathcal{O}(h^3 f'') = 0$.
- b) The error of this integral is indeed proportional to $h^3 f''$ for a polynomial of degree 2 by finding the difference between exact solution and Simpson's solution for $f(x) = a_0 + a_1 x + a_2 x^2$.

Problem 2

Consider the following function

$$f(x) = e^x \sin x$$

a) Evaluate

$$\int_{2}^{3} f(x) \, dx$$

using Simpson's formula for N = 5, 10, 50, 100, 1000.

b) Compare errors and discuss the results. What is the relation between the error and N?

Notes:

a) Show your results in a table.

- b) Error is defined as the difference between the evaluation and the actual value.
- c) Note that you can find the actual value algebraically.

Problem 3

Consider the following integral:

$$I = \int_0^1 f(x) \, dx = \int_0^1 \frac{dx}{1+x^2} = \pi/4 = 0.78540$$

Write a Monte Carlo code that evaluates I and σ_I for N = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000]with w(x) = 1 and $w(x) = A\cos(kx)$. Find k, such that $\cos(kx) = f(x)$ at the lower and upper bound of the integral, find A by normalizing w(x). Your code should give an output as follows:

where I_1 is calculated with w(x) = 1, and I_2 is calculated with $w(x) = A\cos(kx)$.