Phys 311/407

Summer 2014

Problem Set #8

Reading: Rohlf 8.1, 8.2, 8.3

Problem 1:

Consider the wave packet $\psi_p(p) = C \exp(-a|p|/\hbar)$ where a is a positive real number. Find the normalization constant C such that:

$$\int |\psi_p(p)|^2 \, \mathrm{d}p = 1$$

Problem 2:

Find $\psi(x)$ for the momentum wave function $\psi_p(p)$ given in question 1. Show that it is normalized.

Problem 3:

Show that

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

for the wave functions given above. [Hint: $\int u^2 e^{-u} du = -(u^2 + 2u + 2)e^{-u}$]

Problem 4: – Rohlf 7.31 – Modified

Consider a non-relativistic particle of mass m that is confined by a potential: $V(x) = +\infty$ for |x| > L/2, and $V(x) = -V_0 < 0$ for $|x| \le L/2$. (a) Determine the allowed energies of the particle. (b) If the particle is an electron, L = 0.2 nm and $V_0 = 20$ eV, how many states have a negative energy?

Problem 5: - Rohlf 7.23

Show by direct substitution into the Scrödinger equation that the wave function

$$\psi(x) = C\left(\alpha^{3/2}x^3 - \frac{3}{4}\sqrt{\alpha}x\right)e^{-\alpha x^2}$$

where $\alpha = m\omega/2\hbar$ and C is a normalization constant, is a solution of the harmonic oscillator, $V(x) = \frac{1}{2}m\omega^2x^2$. Calculate the corresponding energy.